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Abstract-A SIMPLE numerical algorithm is used to analyze the natural convection in a verticai cylindrical 
enclosure filled with a saturated anisotropic porous medium. The boundary conditions of the enclosure 
are assumed to be maintained at a uniform high temperature except that the temperature of the bottom is 
low. The effects of anisotropic permeability ratio, anisotropic thermal conductivity ratio, geometrical 
aspect ratio and Rayleigh number on the flow field and heat transfer are investigated. Numerical results 
show that the heat transfer rates of the side and bottom walls increase, either decreasing the values of 
anisotropic permeability ratio or increasing the values of anisotropic thermal conductivity ratio, and the 

side average Nusselt number increases as the aspect ratio decreases. 

1. INTRODUCTION 

NATURAL convection in saturated porous media has 
recently received considerable attention because of 
numerous apphcations. Such applications include 
natural convection in geothermal reservoirs, aquifers, 
porous insulations, packed bed reactors, sensible heat 
storage beds, and beds of fossil fuel such as oil shale 
and coal. Excellent reviews are available by Cheng [ 1, 
21 and Combarnous [3]. The most common practice 
is to describe heat transfer in porous media, made up 
of a solid matrix and a saturated fluid, as a fictitious 
continuum. 

The previous researchers primarily concerned one 
of the two extreme configurations in which the 
phenomenon could exist : (1) the Auid layer heated 
from the side, and (2) the fluid heated from below. 
The early experimental studies of Schneider [4] 
demonstrated that the net heat transfer across the 
porous layer increases monotonically as the Rayleigh 
number increases. The theoretical work on the con- 
vection-dominated regime of porous layers heated 
from the side was pioneered by Weber [5] who 
developed on Oseen-linearized solution for the 
boundary layer regime in a tail layer. Weber’s solution 
was modified later by Bejan [6] to account for the heat 
transfer taking place vertically through the core region 
of a moderately tall layer. In addition, the articles by 
Peirotti et al. [7], Vasseur et al. [8], Pouhkakes and 
Bejan [9], Prasad and Kulacki [lo, 1 l] should be con- 
sulted, as should the study of the connective flow of 
fluid through porous media heated from below, from 
early studies by Horton and Rogers [12], through 
numerical studies by Wooding [13], Horne and 
O’Sullivan [14], to experimental studies by Com- 
barnous and LeFur [ 151 and Caltagirone et al. [ 161. 

So far, the investigations have usually been con- 
cerned with isotropic porous media. However, many 
porous materials are anisotropic, for example, fibrous 

insulation materials. Another important example is 
groundwater motion in sediments and other aniso- 
tropic rocks, especially in areas with geothermal 
activity. Kvernvold and Tyvand 117 performed the 
theoretical investigation of convective flows in hori- 
zontally anisotropic porous layers. Burns et al. [18] 
incorporated anisotropic permeability in their study 
of convection in vertical slots. Bories [ 191 studied the 
effect of anisotropy on the criterion for the onset of 
convection. 

The purpose of the present work is to investigate 
the flow in an anisotropic porous medium due to 
buoyancy in a vertical cylindrical enclosure in which 
the temperature (rb) of the top and circumferential 
surfaces of the enclosure are the same and higher 
than that of the bottom wall (r,), for a wide range 
of parameters: 0.1 < K* < 10, 0.1 < ;I < 10, 0.5 < 
A < 2 and 0.01 < Ra* d 100. The problem under 
such conditions is rarely investigated. This has motiv- 
ated the present investigation. 

2. ANALYSIS 

The physical situation and coordinate system are 
shown in Fig. 1. The projection of the enclosure is of a 
vertical rectangular cross-section, with hot isothermal 
top and circumferential surfaces (Th) and with the 
bottom wall kept at a lower temperature (Tc). The 
flow is assumed to be two-dimensional. The fluid in 
the porous enclosure is assumed to have constant 
properties except insofar as the buoyancy is con- 
cerned ; the convecting fluid and the porous matrix 
are in local thermodynamic equilibrium ; Darcy’s law 
and the Boussinesq approximations are employed. 

Then, the equations that account for the con- 
servation of mass, momentum, and energy for the 
porous enclosure are as follows : 
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NOMENCLATURE 

gravitational acceleration 

height of the porous cavity 
height of the enclosure 
thermal conductivity 
permeability 
anisotropic perm~bility ratio 
local Nusselt number 

thermal expansion coefficient 
anisotropic thermal conductivity ratio 
dimensionless temperature, 

(T- r,h(r,,- T,) 
viscosity of fluid 
density of fluid. 

P 
RU* 
T 
ii. V 
r, II 
R, Z 

pressure 

dimensionless pressure 
Darcy modified Rayleigh number 
temperature 
dimensionless velocity in f, z directions 
radial and vertical coordinates 
dimensionless coordinates. 

Superscript 
average quantities. 

Subscripts 
h bottom wall 
( cold 

11 hot 
.s side wall 

Greek symbols 

a, thermal diffusivity in r-direction 

E:_ thermal diffusivity in -_-direction 

t top wall 
Y t-direction 
I r-direction. 

with boundary conditions : 

ZV 
r = 0: -_l = 0, 

?T 
--- = () 

cr r’r 

r = r,,: Vr = 0. T = T,$ 

z=O: V,=O. T=T, 

z = zt,: VI = 0, T = T,, (5) 

where 17~ and Kz are the r- and z-direction permeability 
of the saturated porous medium, respectively: k, and 
k, are the r-direction and z-direction thermal con- 
ductivity, respectively. The other various symbols are 
defined in the Nomenclature. 

The following dimensionless variables are intro- 
duced : 

Z=l 
; e=1 
I 

V I I 

z=~~e=l %!+:+;!zo :: 

Then, equations (l)-(4) become 

R=O elto 
FE. I Schematic of the physical system. 
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with the dimensioniess boundary conditions 

au a0 
R=O; =, z= 0 

R= 1; u=o, 0=1 

z=o; v=o, o=o 

z= 1; V=O, @=I. (I 1) 

When K* = /1 = I, equations (7)-(1 I) are reduced to 
the traditional problem of isotropic porous media 
with isotropic thermal diffusivity. 

In terms of new variables, it can be shown that the 
local and average Nusselt numbers are given by 

Nub= g at Z=O 
/ 

Nu, = g at Z = 1 

Nut=: at R=l 

and 

NU* = 2 
1 do 

-i I I) REZlo 
’ a0 -s I Nu, = - 

0 aR.=, 
dz 

Nu, = 2 
’ a0 -I I ” R&l, 

dv (12) 

where the I+?.+,, Nu, and Nu, are the local Nusselt 
numbers for the bottom, top and sidewall, respec- 
tively. 

3. NUMERICAL METHOD OF SOLUTION 

The numerical procedure used is based on the iter- 
ative scheme. The hybrid central/upwind differences 
is used for the convective terms with central difference 
for the diffusion terms. For the convective term, 
upwind differencing is used if the grid Peclet number 
in a given direction is greater than or equal to 2. while 
centrai differences are employed when grid Pe < 2. 
This procedure is incorporated into the SIMPLE solu- 
tion technique initiated by Patankar [20]. The set of 
difference equations is solved over the entire region 
of interest by obtaining new values for any desired 
variable by taking into account the Iatest-known esti- 
mated value of that variable on the neighboring nodes. 
One iteration of the solution is completed when, in a 
line-by-line technique, all the lines in a chosen direc- 
tion have been accounted for. Line inversion iteration 

with an under relaxation value of 0.5 for velocity 
terms, 0.6 for the pressure correction term and 0.8 for 
the temperature term was incorporated to facilitate 
calculation. 

A convectional numerical scheme with nonuniform 
(31 x 31) grids, was applied to the present physical 
system. The finest grid, of size 0.01, are located adjac- 
ent to the wall and the centerline, and the size of other 
grids is chosen such that each is within 110% of its 
neighboring grids in order to avoid abrupt changes 
and divergence. 

By first assuming a pressure distribution within the 
pressure cavity domain, the set of difference equations 
for the r- and -_-momentum and energy equations is 
solved for the porous cylinder. After a sweep of the 
solution domain is completed, adjustments are made 
to the pressure field so that the continuity, momen- 
tum, and energy equations are satisfied simul- 
taneously. The convergence criterion adopted is that 
the change of variable at any node should be less than 
0.0001. 

The adequacy of the grid is verified by comparing 
the results computed with a 31 x31 grid with those 
obtained using a 61 x 61 grid. The comparison for 
the temperature distributions at different radial and 
elevation is agreed. For example, the maximum dis- 
crepancy between the temperature distributions for 
the two grid sizes is within 0.0001 and the average 
Nusselt numbers along all surfaces agree to the third 
significant digit beyond the decimal point. 

4. RESULTS AND DISCUSSIONS 

Numerical results for the streamlines, isotherms 
and the Nusselt number are obtained for 0.1 < K* < 
10,0.1~~~~0,0.5~A~2and0.01~Ra*~~00. 

Figure 2 shows the effects of anisotropic per- 
meability on the streamlines and isothermal lines. 
From Fig. 2(b) (K* = 1 ; i.e. isotropic porous media), 
the flow is clearly driven by the temperature difference 
between the bottom wall and the circumferential and 
top surfaces. The heated top wall and vertical sidewall 
as well as the cooled bottom wall are lined by boun- 
dary layers. The vertical boundary layer is most 
evident in the lower section of height, where it is 
sandwiched by the most pronounced temperature 
difference AT. Above this height the vertical jet accel- 
erated in the vertical boundary-layer region dis- 
charges into a pool of the nearly isothermal trapped 
fluid. The vertical jet decelerates and loses much of 
its momentum before smoothly rounding the upper 
right-hand corner of the enclosure. In addition, the 
eye of the vortex approaches the lower right-hand 
corner. Figures 2(a)-(c) indicate that as K* increases 
from 0.1 to 10, the vortex is more inclined to the 
bottom wall, and the high tem~~ture region becomes 
smaller. Therefore, the top wall heat transfer rate 
increases with increasing the values of K*. 

Figure 3 shows the variation of the average Nusselt 
number of the bottom side with K* at four different 
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FG. 2. The streamlines and isotherms patterns for A = 1. Ra* = 100. 2. = I, (a) K* = 0.1. (b) K* = I. 
(c) K* = 10. 

values of Z&z*. It is shown that as the value of K* 
increases, the average Nusselt number decreases. This 
characteristic becomes more visible as Ru* increases. 
It is also indicated that as Ra* increases, the average 
Nusselt number increases. Figure 4 shows the vari- 
ation of the average Nusseh number of the sidewall 
with K* for different values of Ra*. It is shown that 
the phenomenon is similar to Fig. 3. However, these 
phenomena are not observed at the top side. Figure 5 
shows that the average Nusselt number of the top side 

increases with increasing the value of K* or decreasing 
the value of Ra*. From Figs. 3-5, it is found that a 
major fraction of the total heat transfer occurs from 
the lower sidewall, while the top wall seems to be 
insulated in all cases. 

The local Nusselt number distributions on the side- 
wall along the cylindrical axis are plotted in Fig. 6 for 
three different values of aspect ratio A. The local 
Nusselt number decreases monotonically as Z in- 
creases to the top wall, and the heat transfer is most 
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FIG. 3. The variation of the average Nusselt number of the 

bottom wall with K* for different Ra* at A = I, 1, = I, 

19 

4.2 

4.0 

3.8 E 

3.6 

3.2 

2.8 
10-l I 10 

K*(Log) 

0.8 

0.6 

2 

0.4 

0 n=o.5 

0 A=l.O 

A A=2.0 

0 10 20 30 40 50 60 70 80 

FIG. 6. The variation of the local Nusselt number of the 
side wall with Z for different aspect ratio (K* = 1, I. = I. 
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evident in the lower section of height, which decreases 
with increasing the aspect ratio A. Figure 7 shows the 
variation of the local Nusseh number on the bottom 
wall with R. It is seen that the primary heat transfer 
occurs nearby at R = I, and when aspect ratio A 
decreases, the primary heat transfer occurs more 
nearby at R = I. Figure 8 shows the variations of the 
Nu, vs K* for three different values of A. It is shown 
that as aspect ratio A increases two times. the Nu, 
decreases to half of the original values. It is also 
indicated that Nu, decreases with increasing the 
values of K*. 

The effects of anisotropic thermal conductivity ratio 
on the streamlines and isothermal lines are shown in 
Fig. 9. It is seen that as i increases, the eye of the 

vortex approaches toward the lower right-hand corner 
and also inclines towards the bottom wall. In addition. 
the high temperature region becomes larger as i 
increases. The variations of the Nusselt number with 
anisotropic permeability and thermal conductivity 
ratio for the bottom and side wall are shown in Figs. 
IO and 1 1, respectively. As expected, both the Nu,, and 
i. NM, increase as 1 increases. 

5. CONCLUSION 

The numerical solutions have shown significant 

effects of anisotropic permeabilities, thermal con- 
ductivities on the convective heat transfer in a vertical 
cylindrical porous media. The major fraction of the 

FIG. 9. The streamlines and isotherms patterns for A = 1, Ra* = 50, K* = I, (a) i = 0.1, (b) i. = I, 
(c) /I = 10. 
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I$ 

FIG;. 10. The variation of the Nusselt number of the bottom 
wall with i and K* (&I* = SO, A = I). 

10-i 1 10 

FIG. 1 I. The variation of the Nusselt number of the side wall 
with i and Ic* (Ru’ = SO, A = I). 

total heat transfer comes from the lower side wa3, 
while the top wall seems to be insulated in all cases 
we analyzed. The heat transfer is more evident in the 
lower section of height as the aspect ratio A decreases. 
The vortex is more inclined to the bottom wall, and 
the high temperature region becomes smaller as K* 
increases. The eye of the vortex approaches toward 
the lower right-hand corner, also inclines toward the 
bottom wall and the high temperature region enlarges 
as k increases. The heat transfer rate of the side wall 
and bottom wall increases. either decreasing the values 
of anisotropic permeability ratio or increasing the 
values of anisotropic thermal conductivities ratio. 
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